Score Tests in Generalized Linear Measurement Error Models
نویسندگان
چکیده
منابع مشابه
SIMEX variance component tests in generalized linear mixed measurement error models.
In the analysis of clustered data with covariates measured with error, a problem of common interest is to test for correlation within clusters and heterogeneity across clusters. We examined this problem in the framework of generalized linear mixed measurement error models. We propose using the simulation extrapolation (SIMEX) method to construct a score test for the null hypothesis that all var...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملLocal and omnibus goodness-of-fit tests in classical measurement error models.
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in th...
متن کاملDeconvolution Based Score Tests in Measurement Error Models
Consider a generalized linear model with response Y and scalar predictor X. Instead of observing X, a surrogate W = X + Z is observed where Z represents measurement error and is independent of X and Y. The efficient score test for the absence of association depends on m(w) = E(XIW = w) which is generally unknown (Tosteson and Tsiatis, 1988). Assuming that the distribution of Z is known, asympto...
متن کاملPower and sample size calculations for generalized regression models with covariate measurement error.
Covariate measurement error is often a feature of scientific data used for regression modelling. The consequences of such errors include a loss of power of tests of significance for the regression parameters corresponding to the true covariates. Power and sample size calculations that ignore covariate measurement error tend to overestimate power and underestimate the actual sample size required...
متن کامل